Рассматривается специфика Web-ресурсов как наиболее актуального класса современных информационных систем - polpoz.ru o_O
Главная
Поиск по ключевым словам:
страница 1страница 2
Похожие работы
Название работы Кол-во страниц Размер
Проектирование информационных систем 1 115.81kb.
Внедрение современных информационных технологий (ИТ) одна из наиболее... 1 32.14kb.
Закон Республики Казахстан "Об информатизации" 1 140.63kb.
В статье рассматривается социальная справедливость как базовая ценность... 1 54.42kb.
Наименование государственной (муниципальной) услуги 1 69.43kb.
Рабочая программа по дисциплине «Проектирование информационных систем»... 1 305.15kb.
На примере анализа индоевропейской мифологической системы рассматривается... 1 31.73kb.
Особенности систем дистанционного обучения для сетей с малыми скоростями... 1 33.64kb.
Взаимосвязь направлений развития информационных технологий и экономической... 1 13.23kb.
Информатизация отечественного образования: итоги и перспективы 1 196kb.
Программа дисциплины "Администрирование корпоративных информационных... 1 241.05kb.
Конспект занятия по математике для детей старшего дошкольного возраста 1 37.67kb.
1. На доске выписаны n последовательных натуральных чисел 1 46.11kb.

Рассматривается специфика Web-ресурсов как наиболее актуального класса современных - страница №1/2



Подход к методике обучения проектированию Web-ресурсов

в вузе: основные проблемы и выбор средств проектирования



Перевезенцева Е.С.
Рассматривается специфика Web-ресурсов как наиболее актуального класса современных информационных систем. Анализируются проблемы обучения проектированию Web-ресурсов в вузе и предлагается подход к разработке, предполагающий комплексное использование различных видов средств проектирования.
Specifical aspects of Web-resources, the most important class of modern information systems, are described in this paper. Author analyzes several problems of  Web resources development training in higher  education and proposes an development approach based on complex use of different sorts of design instruments.
Ключевые слова

WEb-ресурс, проектирование, средства проектирования, методология RUP, язык UML, диаграммы UML.

Введение

Web-ресурсы, представляющие собой ниболее актуальный класс современных информационных систем, одновременно являются одним из наиболее сложных в разработке классом, объединяющем в себе свойства целого ряда компьютерных продуктов. Это порождает специфические проблемы разработки и требует выбора адекватных этой специфике средств. В работе акцент делается на использовании методологии RUP (Rational Unified Process) – методологии, представляющейся на данном уровне развития информационных технологий наиболее адекватной задачам разработки сложных программных систем, ориентирующихся на интерактивное взаимодействие с пользователем и, следовательно, плохо поддающихся формальному описанию и требующих при проектировании достаточно гибких средств.

Процессу проектирования уделяется основное внимание. В ситуации, когда компьютерные продукты становятся неотъемлемым элементом во всех – весьма разнородных и в большинстве своем плохо поддающихся формальному описанию – сферах деятельности, это наиболее ответственный этап, базирующийся на анализе целей пользователей и классов решаемых задач. Удовлетворение целей пользователя является основным критерием успешности продукта. Вся разработка, и прежде всего – проектирование, ориентирована на это. Эти тезисы, порождаемые реальностью, присутствуют во всех серьезных источниках, посвященных разработке компьютерных продуктов, причем характерно, что эти источники могут быть независимы и относиться к различным направлениям, подходам и этапам разработки.

Качество конечного продукта в первую очередь определяется качеством проекта. В то же время достаточно формализованные методы разработки, применимые для решения современных задач, и в первую очередь – методы проектирования, как нечто целостное просто отсутствуют. Формирование таких методов на основе анализа традиционно используемых и рождающихся в практике разработки подходов представляет непростую, но нуждающуюся в решении задачу. Автор предлагает некоторые средства ее решения, вписывающиеся в учебный процесс.

Излагаемые в статье положения используются автором в практике преподавания на факультете информационных технологий МГППУ ряда дисциплин, как напрямую преследующих цель обучения принципам создания Web-ресурсов, так и связанных с их созданием, а также при выполнении конкретных разработок.

1. Характер современных Web-ресурсов

1.1. Специфика использования

С точки зрения пользователя Web-ресурсы представляются совокупностью Web-страниц, содержащих необходимую пользователю информацию и элементы управления, а процесс работы с ними – как переход между страницами, управляемый данными пользователя, задаваемыми в ответ на запрос. Традиционный термин “сайт” относится к этой – пользовательской – стороне Web-ресурсов. Однако современные Web-ресурсы как компьютерный продукт характеризуются колоссальным расхождением между тем, что предъявляется пользователю, и тем, как это формируется и предъявляется и какие средства при этом используются. При этом усложнение структуры Web-ресурсов и их эволюция от совокупности HTML-страниц, размещенных на сервере и выдаваемых пользователю, до огромных программных комплексов, когда подавляющая часть предъявляемых страниц формируется программным путем в процессе функционирования ресурса, диктуется прежде всего огромным диапазоном пользовательских задач.

Наиболее значимые черты современных Web-ресурсов с точки зрения их использования:


  • охват самых разных проблемных областей;

  • интерактивность – достижение результата путем взаимодействия с пользователем; направление процесса работы ресурса как программной системы определяется данными, задаваемыми пользователем в ответ на запрос системы;

  • применение различных средств предъявления информации, или мультимедийный характер (от простого текста до трансляции видео в реальном режиме времени);

  • применение различных средств хранения информации (от хранения данных в виде файлов до использования систем управления базами данных).

Этот диапазон возможностей и областей практического применения определяет синергетический характер – взаимоусиление воздействий различных факторов применения, взаимопроникновение требований – как самих ресурсов, так и идей, принципов и методов их разработки и дает толчок не просто к поиску методов разработки в конкретной области, но к их анализу и интеграции на качественно ином уровне, способном обеспечить некоторый общий подход к разработке. Острая необходимость в такого уровня методах особенно сильна в случае, когда речь идет о преподавании основ интернет-технологий, где Web-ресурсы выступают как объект изучения и разработки, т.е. при профессиональной подготовке лиц, которым, в соответствии с полученной специальностью, предстоит участвовать в разработке в той или иной роли (от постановщика задачи до создателя кода). Наличие достаточно точных и адекватных средств описания объекта и процесса разработки становится ключевым фактором обучения; при этом упомянутые средства должны быть достаточно универсальными и сохранять свою актуальность и по завершении процесса обучения.

Следует также учесть новизну самой области, вступающую в противоречие с консервативностью используемых методов разработки компьютерных продуктов – при том, что недостаточно разработаны даже методы создания программного обеспечения в традиционном плане, не говоря об интернет-программировании.

1.2. Специфика разработки

Диапазон возможностей Web-ресурсов с точки зрения использования определяет их главную характеристику с точки зрения внутренней структуры и технологии разработки – двойственный характер [2]. Это приводит к необходимости вести разработку в двух очень разных, но одновременно взаимосвязанных аспектах.

С одной стороны, основным содержанием Web-ресурсов являются данные, ради представления которых ресурс создается, или контент. Отсюда – задачи проектирования контента и организации взаимодействия с пользователем, появившиеся одновременно с рождением Интернета. Это основной (и сложившийся первым) класс задач проектирования в случае, если Web-ресурс представлен набором статических, заранее созданных и хранимых на сервере Web-страниц, связанных ссылками. Первоначально этот класс задач был единственным.

С другой стороны, современные Web-ресурсы являют собой развитые программные комплексы, использующие многообразные программные средства и инструменты для создания кода и системы управления базами данных (СУБД) для хранения информации и управления ею. Информация, предъявляемая пользователю, плюс возможности интерактивного взаимодействия с ресурсом (сайтом) есть не что иное как результат работы соответствующих программ (точнее, совокупности программных сценариев), основная часть которых функционирует на стороне сервера. Отсюда – задачи проектирования Web-ресурсов как программных комплексов.

Приведенные положения иллюстрируются на рис.1.



Рис. 1. Два аспекта проектирования Web-ресурса

Схема достаточно условна; связи, идущие сверху вниз, означают прежде всего не временную последовательность разработки, а факт реализации вышележащих блоков в нижележащих. Тем не менее она в общих чертах позволяет отобразить двойственность объекта рассмотрения. Кратко остановимся на основных элементах этой схемы.

В действительности проектирование взаимодействия, носителем которого является интерфейс компьютерного продукта как совокупность средств, большая часть которых представлена визуальными элементами управления, пронизывает (но, к сожалению, далеко не всегда должным образом реализуется) практически все смысловые моменты проектирования. Однако для пользователя продукт представлен только своим интерфейсом.

Главное, что должно быть заложено в проектирование взаимодействия – цели пользователей, для которых разрабатывается продукт, и классы решаемых ими задач [1, 3]. Теоретической базой здесь служат основные принципы когнитивной психологии, преломляемые под углом взаимодействия человека с компьютером [5]. Хорошо спроектированный и реализованный интерфейс прежде всего должен быть состоятельным, т.е. при решении задач, для которых предназначен продукт, все элементы интерфейса должны поддерживать решение этих задач, в комплексе представлять собой инструмент их решения.



Информационная архитектура определяется как cочетание схем организации, предметизации и навигации, реализованных в информационной системе. Цель создания этих схем – помощь пользователю в поиске нужных данных [4, 12]. Эта сторона разработки исторически начала складываться раньше, изначально была единственной и воплощалась в структуре размещаемых на сервере страниц и навигации по ним.

Как было сказано выше, современные Web-ресурсы в большинстве своем – сложные программные комплексы. Поэтому к их разработке применимы все требования, предъявляемые к разработке программного обеспечения (ПО), и могут быть использованы соответствующие средства проектирования. Страницы ресурса, видимые пользователем, формируются программным путем; на сервере размещается не готовый сайт, а программные сценарии, его формирующие.

В Web-ресурсах традиционной формы (статических сайтах) информационная архитектура воплощается в распределении информации по страницам и схеме навигации по ним. В современных Web-ресурсах информационная архитектура программно формируемой части ресурса воплощается и в структуре баз данных, и в программной реализации последовательности подачи пользователю материала, управляющих элементов и способов передачи данных.

В конечном продукте оба аспекта интегрируются в организацию взаимодействия с пользователем и по отдельности могут рассматриваться только в процессе проектирования как аспекты взаимодействия – с точки зрения предъявления информации пользователю (с позиций информационной архитектуры) и с точки зрения способа формирования этой информации (с программных позиций). Проще говоря, информационная архитектура определяет то, что будет видеть пользователь, а программная часть ресурса – как это формируется.

При этом существенно, что строго формализованных средств, позволяющих описать хотя бы каждый аспект по отдельности, нет. Дисциплины, посвященные информационной архитектуре, располагают целым рядом положений [4], однако не являются единой сложившейся дисциплиной. То же можно сказать о технологии разработки программного обеспечения (ПО), состояние которой не расценивается как удовлетворительное. Поэтому единственно приемлемым выходом из ситуации представляется использование средств из той и другой области с предварительным анализом возможности и целесообразности их применения и возможным внесением модификаций. Необходимость сочетать методы этих двух областей усугубляет проблему, но именно такой подход применяется на практике при достаточно глубокой проработке проектов.

Интерфейс (точнее, визуальный интерфейс) Web-ресурса с пользователем являет собой материальное воплощение организации взаимодействия.

Следует отметить, что каждый из выделенных на вышеприведенной (приблизительной и неполной) схеме этапов располагает собственной – в той или иной мере разработанной и формализованной – технологией, складывавшейся достаточно самостоятельно и в итоге не стыкующейся автоматически с остальными. При этом на схеме никак не отображена специфика собственно сети – обмен данными между компьютерами, клиент-серверное взаимодействие, где также существуют свои принципы, технологии и инструменты.

Учитывая описанную многоаспектность рассмотрения Web-ресурсов, в первую очередь необходимо определить, что же все-таки должно быть объектом изучения в курсах, суть которых можно определить как “Web-технологии”. Очевидна низкая эффективность изучения одного конкретного аспекта (хотя бы и нескольких!) и невозможность охвата в учебном курсе всех аспектов. Так, ни владение тонкостями языка разметки страниц, ни умение программировать отдельные алгоритмы на сетевых языках без знания принципов и протоколов клиент-серверного взаимодействия и соответствующих умений не дадут возможности создать даже простейший реальный Web-ресурс; точно так же его невозможно создать, не умея создать HTML-страницу, но теоретически познав тонкости протоколов и организации запросов.

Выход видится в отборе базовых элементов, необходимых для построения того, что можно было бы считать Web-ресурсом в минимальном объеме, и освоения технологии построения каркаса Web-ресурса, который может лечь в основу дальнейших разработок уже в реальной, не учебной деятельности. Одновременно необходимо расставить акценты на важности тех или иных элементов и основное внимание сосредоточить на ключевых моментах, оставив остальное для самостоятельной проработки.

В данном случае применительно к схеме рис. 1 такими ключевыми моментами являются основные принципы выполнения отдельных этапов и организация их взаимосвязи, т.е. проектирование ресурса в целом. Применительно к реальности необходимо знание принципов работы в сети и соответствующие умения.

Сведения о языке разметки страниц, языках программирования на клиентской и серверной стороне, создании баз данных как правило либо рассматриваются непосредственно в отдельных курсах, либо экстраполируются на основе этих курсов (например, программирование), либо в значительной степени могут быть почерпнуты из справочников.

2. Средства проектирования и документирования

2.1. Анализ основных средств

Рассмотрим некоторые основные средства проектирования и документирования компьютерных продуктов, в том числе Web-разработок, представленные в доступных источниках, включая Интернет, и используемые на практике. В целом средства этого перечня различаются назначением, областями применения, известностью и широтой распространения, и определение степени их применимости к Web-проектированию и особенно – комплексного использования представляет отдельную задачу, решаемую здесь лишь в ограниченном объеме.

Кратко проанализируем следующие направления:



  • методы и средства разработки информационной архитектуры Л. Розенфельда [4];

  • методология проектирования взаимодействия с использованием персонажей А. Купера [1, 3];

  • средства проектирования взаимодействия, описанные в книге Дж. Гарретта [2];

  • средства и методы проектирования и документирования сложных программных проектов (методология RUPRational Unified Process, язык UML с расширением WAEWeb Application Extension для Web – приложений) [7 – 9];

  • структурные методы и средства проектирования программного обеспечения (ПО) и баз данных, изначально ориентированные на описание бизнес-процессов (BpWin, ErWin) [11].

Анализ перечисленных средств и реальная практика разработки Web-ресурсов позволяют сделать некоторые выводы, касающиеся роли и места тех или иных средств. Приведем основные из них.

На начальных этапах разработки наиболее адекватна методология целеориентированного проектирования (Goal Directed Design, GDD) Купера [1,3], позволяющая проанализировать цели пользователей и определить базовые функции будущего изделия. Основные положения этой методологии стали классикой Web-разработки. Эти положения подтверждаются в книге Дж. Гарретта [2].

Положения методологии целеориентированного проектирования прекрасно согласуются с положениями по проектированию методологии RUP, хотя они различны по назначению, авторству и времени создания. Первая из них преследует цель только проектирования взаимодействия, но реализует эту цель во всей возможной полноте и с учетом неформального характера предметной области. Вторая позиционируется как методология разработки программного обеспечения на всех его этапах, начиная с проектирования, содержит массу средств документирования процесса разработки ПО (в форме диаграмм и сценариев), но предполагает, что неформальная содержательная часть работы по определению целей и т.д. проделана. Однако благодаря наличию мощных и гибких средств описания различных аспектов процесса разработки эта методология в первую очередь является методологией проектирования. В итоге методология RUP, не преследуя исходно такой цели, предоставляет средства для отображения целей и основных функций компьютерного продукта, а именно, формализм диаграмм вариантов использования (Use Case диаграмм).

Структурные методы (например, [11]) позволяют построить модель внутренней организации системы и потоков данных, позволяющую перейти к программной реализации и построению баз данных. Эти методы созданы значительно раньше RUP и предназначены именно для упомянутых задач моделирования, но решают эти задачи хорошо и очень распространены, в том числе в качестве предметов учебных курсов вузов. Несмотря на то, что структурные методы и RUP относятся к разным подходам (к структурно - и объектно-ориентированному соответственно), противоречий между ними нет; возможно использование диаграмм как одного, так и другого направления.

И, наконец, специализированные средства реализующего методологию RUP языка UML, а именно, расширение Web Application Extension (WAE), позволяют отобразить специфику программирования Web-ресурса, суть которой состоит в обмене данными между клиентом и удаленным сервером, запуске серверных сценариев посредством передачи данных клиента и формировании этими сценариями предъявляемых на клиентской стороне Web-страниц.

В качестве вывода из данного раздела следует отметить, что из всех современных средств проектирования компьютерных продуктов методология RUP наиболее полно охватывает весь процесс разработки и – главное – делает акцент на начальных его этапах: анализе целей и задач и проектировании. В итоге сам методологический подход и комплекс средств проектирования таковы, что область их применения может выходить далеко за рамки разработки программного обеспечения. Использование этой методологии является не только тенденцией, но и практикой Web-проектов и представляется весьма плодотворным.

2.2. Методология RUP и язык UML

Как уже было сказано, методология RUP (Rational Unified Process), предназначенная для выполнения всех этапов разработки проекта по нисходящей схеме и предлагающая систему диаграмм, описывающих различные аспекты проекта на различных его стадиях, и одно из главных инструментальных воплощений RUP – язык UML (Unified Modeling Language, Унифицированный язык моделирования) являются лидерами в области разработки программных средств.



UML - язык для спецификации, визуализации, конструирования и документирования сложных систем. Включает средства для описания модели предметной области в различных аспектах: от уровня постановки целей до уровня программной реализации, давая возможность отображения как структуры, так и функционирования проектируемой системы [7 – 9]. Модель (точнее, совокупность моделей) в UML описывается с помощью различных видов диаграмм.

Диаграмма вариантов использования (Use Case diagram) являет собой наиболее общую концептуальную модель сложной системы, которая является исходной для построения всех остальных диаграмм и описывает общие требования к функциональному поведению проектируемой системы.

Диаграмма классов (class diagram) является по своей сути логической моделью, отражающей статические аспекты сложной системы.

Диаграммы, описывающие поведение (behavior diagrams), отражают динамические аспекты функционирования сложной системы.

Сюда входят: диаграмма состояний (statechart diagram) диаграмма деятельности (activity diagram); диаграммы взаимодействия (interaction diagrams); диаграмма последовательности (sequence diagram); диаграмма кооперации (collaboration diagram).

следующая страница >>


izumzum.ru