Базовые элементы выпускаются в виде отдельных микросхем, либо входят в состав функциональных узлов и блоков, реализованных в виде си - polpoz.ru o_O
Главная
Поиск по ключевым словам:
страница 1
Похожие работы
Базовые элементы выпускаются в виде отдельных микросхем, либо входят в состав функциональных - страница №1/1

2. ИНТЕГРАЛЬНЫЕ ПОТЕНЦИАЛЬНЫЕ ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ: СРАВНИТЕЛЬНАЯ КЛАССИФИКАЦИЯ, ОСНОВНЫЕ ПАРАМЕТРЫ

В процессе развития интегральной электроники выделилось несколько типов схем логических элементов, имеющих достаточно хорошие характеристики и удобных для реализации в интегральном исполнении, которые служат элементной базой современных цифровых микросхем.

Базовые элементы, независимо от их микросхемотехники и особенностей технологий изготовления, строятся в одном из базисов (как правило, в базисе ИНЕ или ИЛИНЕ).

Базовые элементы выпускаются в виде отдельных микросхем, либо входят в состав функциональных узлов и блоков, реализованных в виде СИС, БИС, СБИС.

В процессе реализации базовые логические элементы строят из двух частей: входной логики, выполняющей операции И или ИЛИ, и выходного каскада, выполняющего операцию НЕ.

Входная логика может быть выполнена на диодах, биполярных и полевых транзисторах. В зависимости от этого различают:



  • транзисторно-транзисторную логику (ТТЛ), (ТТЛШ),

  • интегральную инжекционную логику (И2Л),

  • логику на МДП-транзисторах (МДП),

  • МОП-транзисторная логика на комплементарных транзисторах (КМОП-логика).

В перечисленных группах логических элементов в качестве выходного каскада используется ключевая схема (инвертор).

Другая группа логических элементов основана на переключателях тока – эмиттерно-связанная логика (ЭСЛ-логика).

2.1. Транзисторно-транзисторная логика (ТТЛ)

Переходные процессы биполярного ключа

В интегральных микросхемах выполненных на биполярных транзисторах роль ключа выполняет транзистор, включенный по схеме с общим эмиттером (рис. 2.1).

Процесс переключения биполярного транзистора определяется двумя факторами: процессами накопления и рассасывания неосновных носителей в базе, формирующих ток коллектора ik , и наличием емкостей эмиттерного и коллек- торного переходов Cэ и Cк , которые перезаряжаются при переключениях. Если





а б

Рис.2.1. Ключевая схема на биполярном транзисторе: а- принципиальная схема; б – вольт/амперная характеристика ключа

в
Рис.2.2. Переходные процессы в ключе на биполярном транзисторе
ходное напряжение Uвх равно нулю, то транзистор закрыт и ток коллектора ik равен незначительному току Iк0 (рис. 2.2).

При подаче входного напряжения ступенчатой формы появляется базовый ток Iб такой же формы. Если величина Iб достаточна для ввода транзистора в насыщение, то возрастающий ток коллектора будет стремиться к уровню Iб, где  – коэффициент усиления тока транзистора. Нелинейный характер нарастания ik определяется наличием емкостей переходов база-эмиттер (Cэ ) и база-коллектор (Cк). Максимальное значение ik ограничено сопротивлением Rk и не может превысить величины .

Значение коллекторного тока, в тоже время, определяется количеством неосновных носителей в базе, поэтому, когда ток ik достигнет величины Ikнас, его рост прекратится, но рост числа носителей заряда в базе будет продолжаться до величины соответствующей току Iб . Таким образом, в базе транзистора накапливается избыточный заряд неосновных носителей, не участвующих в создании коллекторного тока.

Как видно из диаграммы, процесс открывания транзистора занимает некоторый интервал времени tвкл. Уменьшение этого времени на практике достигается повышением в 1,53 раза базового тока, по отношению к току, достаточному для введения транзистора в насыщение. Однако, увеличение базового тока в этом случае приводит к увеличению избыточного заряда неосновных носителей в базе, которые после снятия входного сигнала (отключения тока Iб) продолжают поддерживать некоторое время tр коллекторный ток неизменным. Отрезок времени tр называют временем рассасывания неосновных носителей из базы. Только после удаления избыточного заряда из базы начинается процесс уменьшения коллекторного тока до уровня Iк0 .

В быстродействующих ключевых схемах принимают меры для уменьшения tр, и соответственно, tвыкл , в целом.

Ключевая схема на транзисторе Шоттки

Процесс рассасывания можно устранить, если транзистору сразу же после отпирания создать режим, когда бы он находился на границе между состоянием насыщения и активным режимом работы. Этого м

Рис.2.3. Ключевая схема


на транзисторе Шоттки
ожно достичь шунтированием перехода коллектор–база транзистора диодом Шоттки (рис.2.3).

Когда транзистор закрыт или работает в активном режиме, потенциал коллектора выше потенциала базы и, следовательно, диод закрыт и не влияет на работу ключа. В режиме насыщения, когда транзистор полностью открыт, потенциал его коллектора оказывается ниже потенциала базы, что приводит к открыванию диода, на котором устанавливается напряжение менее 0,5 В, т. е. меньше напряжения, открывающего переход база–коллектор. Транзистор тем самым окажется на грани насыщения, так как диод зашунтирует через себя ту часть тока базы, которая создала бы избыточный заряд.

В интегральном исполнении диод Шоттки представляет собой контакт металла с коллекторной областью транзистора и составляет с ним единую структуру, называемую транзистором Шоттки. Особенностью диода Шоттки является низкое прямое падение на нем напряжения порядка 0,4 В.

Базовый элемент ТТЛ

Основой транзисторно-транзисторной логики является базовый элемент на основе многоэмиттерного транзистора Т1 (рис. 2.4), который легко реализуется в едином технологическом цикле с транзистором Т2. В ТТЛ-логике многоэмиттерный транзистор осуществляет в положительной логике операцию И, а на транзисторе Т2 собран инвертор. Таким образом, по данной схеме реализован базис И–НЕ.

В

Рис. 2.4. Базовый элемент ТТЛ


случае подачи на все входы схемы высокого потенциала, все переходы эмиттер–база транзистора Т1 окажутся запертыми так как потенциал в точке A примерно равен входным сигналам. В то же время, переход база–коллектор будет открытым, поэтому по цепи
EпR1 – база Т1 – коллектор Т1 – база Т2 – эмиттер Т2 – корпус течет ток Iб нас, который открывает транзистор Т2 и вводит его в насыщение. Потенциал на выходе схемы оказывается близким к нулю (на уровне ≈ 0,1 В). Сопротивление R1 подобрано таким, чтобы, за счет падения напряжения на нем от тока Iб нас транзистора Т2, потенциал в точке A был бы ниже, чем потенциал входов, и эмиттеры Т1 оставались бы запертыми.

При подаче низкого потенциала логического нуля хотя бы на один из входов открывается этот переход эмиттер–база транзистора Т1, появляется значительный ток Iэ и потенциал в точке A, равный , приближается к нулевому. Разность потенциалов между базой и эмиттером Т2 также становится равной нулю, ток Iб транзистора Т2 прекращается, и он закрывается (переходит в режим отсечки). В результате выходное напряжение приобретает значение, равное приблизительно напряжению питания (логической единицы).

Входные диоды Д1, … , ДN предназначены для демпфирования (отсечки) отрицательных колебаний, которые могут присутствовать во входных сигналах за счет паразитных элементов предыдущих каскадов.

Существенным недостатком рассмотренной схемы элемента


И–НЕ являются низкие нагрузочная способность и экономичность ее инвертора, поэтому в практических схемах используют более сложный инвертор.

В конце 70-х годов началось широкое применение серий элементов на транзисторах Шоттки с повышенным быстродействием за счет уменьшения задержки выключения ключей. По принципу действия базовый элемент ТТЛШ аналогичен ТТЛ-элементу.

Необходимо заметить, что схемам ТТЛ и ТТЛШ свойственен большой логический перепад напряжений, равный

.

2.2. Логические элементы на МДП-транзисторах

Переходные процессы в ключевой схеме на МДП-транзисторе

Основное влияние на характер протекания переходных процессов в ключевых схемах на полевых транзисторах оказывают емкости, образованные между их выводами (рис. 2.5).

При закрытом транзисторе выходная емкость Cси заряжена до напряжения, практически равного E. Когда входное напряжение превышает пороговое напряжение Uпор (напряжение открывания транзистора) в течение времени задержки




а б
Рис.2.5. Переходные процессы в ключевой схеме на МДП-транзисторах:
а – эквивалентная схема ключа, б – временные диаграммы
формируется проводящее состояние канала. Однако, при достаточно низком сопротивлении Rвн источника входного сигнала Uвх время задержки пренебрежимо мало.

Как только канал сформирован, емкость Cси начинает разряжаться постоянным током Iр, определяемым небольшим сопротивлением проводящего канала транзистора, в течение времени tвкл. За это время выходное напряжение ключа падает до величины близкой к нулю.

При запирании транзистора (уменьшение Uвх до нуля) происходит зарядка емкости Cси через резистор R от напряжения источника питания E в течение времени tвыкл. Это время, как правило, больше времени включения, так как сопротивление нагрузочного резистора R значительно больше сопротивления канала транзистора в проводящем состоянии.

Базовые логические элементы на МОП-транзисторах

В настоящее время в логических схемах используются МДП-транзисторы с диэлектриком SiO2 (МОП-транзисторы).

Анализ МОП-транзисторных логических элементов достаточно прост, т.к. из-за отсутствия входных токов их можно рассматривать отдельно от других элементов даже при работе в цепочке.

На рис. 2.6 показаны два варианта построения логических элементов на МОП-транзисторах с n каналами.

Транзисторы Т3 выполняют роль нагрузочного сопротивления.

Логические уровни в обеих схемах не зависят от нагрузки и соответствуют выходным напряжениям открытого и закрытого ключа:



.


а б

Рис. 2.6. Логические элементы на МОП-транзисторах:


а) – элемент ИЛИ-НЕ, б) – элемент И-НЕ
Соответственно, логический перепад составляет:

.

Напряжение питания Ec МОП-логики выбирают в 3…4 раза больше порогового напряжения Uo открывания транзисторов. Если Uo = 1,5 … 3В, то получаемый логический перепад в 5 … 10В намного превышает значения, свойственные схемам И2Л, ЭСЛ и даже ТТЛ (при напряжении питания 4 … 5В). Поэтому МОП-логика обладает повышенной помехоустойчивостью.

Более высоким быстродействием и низким энергопотреблением характеризуется логика на комплементарных транзисторах.

Ключевая схема на комплементарных транзисторах

В рассмотренных ключевых МОП-схемах существенным недостатком является протекание тока через сопротивление Rк как в открытом, так и в закрытом состояниях ключа и, как следствие, его значительное нагревание.

Э

Рис. 2.7. Комплементарный


МДП-транзисторный ключ

того недостатка лишен инвертор на комплементарных (взаимодополняющихся) МДП-транзисторах (рис. 2.7). Схема построена на двух транзисторах Т1 и Т2 с одинаковыми характеристиками, но с каналами разных типов проводимости. Схема симметрична: когда один из транзисторов выполняет роль замкнутого ключа, то другой служит нагрузочным сопротивлением и наоборот.

В положительной логике и при положительной полярности напряжения питания при подаче на вход схемы логического 0 (Uвх  0 В) транзистор Т1 будет заперт, а транзистор Т2 оказывается в режиме глубокого насыщения и через него потенциал +Е поступает на выход, реализуя на выходе логическую 1. Сквозной ток, протекающий через оба последовательно соединенных транзистора, практически равен нулю, так как сопротивление закрытого транзистора Т1 очень велико.

Если на вход ключа подана логическая 1, то состояния транзисторов меняются на противоположные и через открытый транзистор Т1 на выход будет подан нулевой потенциал корпуса Uвых  0 В, реализуя логический 0. При этом сквозной ток по прежнему останется близким к нулю вследствие большого сопротивления запертого транзистора Т2.

Таким образом, в статическом состоянии схема практически не потребляет мощности от источника питания.

В режиме переключения имеется некоторый интервал времени в течение которого открыты оба транзистора и поэтому сквозной ток может достигать значительных величин. Однако для КМДП-ключей типичны низкие напряжения питания, так что заметного возрастания тока во время переключения обычно не происходит.

По схемотехнике КМОП-логика очень близка МОП-логике.


2.3. Эмиттерно-связанная логика (ЭСЛ)

В основе схемы ЭСЛ лежит переключатель тока, в одно из плеч которого включено параллельно несколько транзисторов. Эти транзисторы равноправны – отпирание любого из них (или всех вместе) приводит к изменению логического состояния переключателя. Поэтому ЭСЛ-элементы выполняют логическую функцию ИЛИ-НЕ.

Вследствие ненасыщенного режима работы транзисторов логический перепад в схеме не превышает 0,65В.

Переключатель тока

Переключателем тока называют симметричную схему (рис. 2.8), в которой заданный ток I0 протекает через ту или иную ее ветвь в зависимости от потенциала Uвх на одном из входов. На втором входе поддерживается некоторое неизменное опорное напряжение Uоп.




а б
Рис. 2.8. Переключатель тока: а – электрическая схема; б – временная диаграмма работы
Опорное напряжение Uоп равно промежуточному значению между напряжениями высокого (В) и низкого (Н) уровней выходного напряжения.

Так как эмиттеры транзисторов соединены между собой, то падение напряжения Uэ прикладывается одновременно к базам Т1 и Т2.

Если на вход переключателя подан высокий уровень (В), т. е.
Uвх = Uоп + , то транзистор Т1 будет открытым, так как на его базе будет прямое напряжение Uэ1 = UвхUэ > 0, а Т2 - закрыт (Uэ2 = UопUэ < 0). Каждая из ветвей переключателя представляет собой инвертор, поэтому на выходе Uвых1 будет низкий потенциал, на выходе Uвых2 – высокий.

Если на вход подан низкий уровень (Н), т. е. Uвх = Uоп – , то откроется Т2, а Т1 закроется. Обычно величины = 0,1 … 0,5 В достаточно для перевода схемы из одного состояния в другое, сохраняя активный режим открытого транзистора.

Таким образом особенность переключателей тока состоит в использовании ненасыщенного режима работы транзисторов, что обеспечивает их повышенное быстродействие и по той же причине повышенные энергетические затраты в статическом режиме.
2.4. Параметры интегральных логических элементов

Независимо от принадлежности к той или иной серии, все логические элементы характеризуются определенным одним и тем же набором параметров, которые являются справочными данными. Значения же этих параметров обусловлены схемотехническим, конструктивным и технологическим исполнением элементов.

Значения параметров, как правило, задаются с запасом и не исчерпывают физических возможностей микросхемы, однако превышать их не следует.

Оценивают микросхемы по следующим основным параметрам:



быстродействию, напряжению питания, потребляемой мощности, коэффициенту разветвления по выходу, коэффициенту объединения по входу, помехоустойчивости, энергии переключения, надежности, стойкости к климатическим и механическим воздействиям. Проанализируем основные из них.

Уровни выходных напряжений


Техническими условиями для каждой серии логических элементов задаются наибольший и наименьший уровни выходных напряжений, соответствующих логическим единице и нулю при допустимых изменениях напряжения питания, нагрузки, температуры. Напряжение

U1вых min соответствует минимальному уровню логической единицы на выходе (для ТТЛ U1вых min = 2,4В), а напряжение U0 вых max – максимальному уровню логического нуля (для ТТЛ U0 вых max = 0,4В).

Статическая помехоустойчивость


Этот параметр определяет допустимое напряжение помех на входах микросхемы и оценивается для низкого и высокого уровней напряжения.


Статической помехоустойчивостью по низкому уровню считают разность , где U0 вых max – максимальное допустимое напряжение низкого уровня на выходе нагруженной микросхемы; U0 вх max – максимальное допустимое напряжение низкого уровня на входе нагружающей микросхемы.

Помехоустойчивость по высокому уровню определяют так: ; здесь U1 вых min – минимальное напряжение высокого уровня на выходе нагруженной микросхемы; U1 вх min – минимальное допустимое напряжение высокого уровня на нагружающем входе.


ТТЛ, например, логика еще будет нормально работать, если на ее входе напряжение логического нуля достигнет 0,8В, а напряжение логической единицы снизится до 2В. Таким образом, гарантированный запас помехоустойчивости в обоих состояниях составляет 0,4В. Реальный же запас помехоустойчивости гораздо больше и превышает 1В.


Коэффициент разветвления по выходу

Этот параметр Краз (нагрузочная способность) определяет максимальное число входов элементов данной серии, которым можно нагружать выходы микросхемы без нарушения ее нормального функционирования.

Коэффициент объединения по входу



Коб определяет число логических входов, которые имеет логический элемент.

Простейшие логические элементы выпускаются с 2, 3, 4 и 8 входами. Более сложные устройства содержат и другие входы: адресные, установочные, разрешающие, входы синхронизации и др.

Входные токи

Эти параметры определяют нагрузку, которую представляет рассматриваемая схема, на предшествующую схему или другой источник сигнала. Различают входные токи I0вх и I1вх при подаче логических нуля или единицы.


Средняя статическая потребляемая мощность

Определяется следующим образом: , где P0пот и P1пот – мощности, потребляемые интегральным логическим элементом в состоянии логического нуля и логической единицы. Это вытекает из того, что в сложных многоэлементных устройствах в среднем половина логических элементов находится в состоянии 1, а половина – в состоянии 0.

Быстродействие

Характеризуется максимальной частотой смены входных сигналов, при которой еще не нарушается нормальное функционирование устройства.

Инерционность полупроводниковых приборов и паразитные емкости служат причиной того, что каждое переключение сопровождается переходными процессами, отчего фронты импульсов растягиваются.

Для оценки временных свойств микросхем обычно пользуются задержкой распространения сигнала, которая представляет собой интервал времени между входным и выходным импульсами, измеренными на уровне 0,5. Задержки распространения сигнала при включении t1,0зд.р. и при выключении t0,1зд.р. не равны, поэтому пользуются усредненным параметром tзд.р. ср. = 0,5(t1,0зд.р. + t0,1зд.р.).

Для последовательностных устройств (триггеры, счетчики и др.) вводятся некоторые дополнительные временные параметры, обусловленные принципом действия: разрешающее время, длительность входного импульса и др.

Обобщенные характеристики известных типов интегральных логических элементов приведены в таблице 1.

Таблица 1


Тип логики

Pст. ср. ,

мВт


tзд.р. ср. ,

нс


Uпом ,

В


Kоб

Kраз

ТТЛ

ТТЛШ


1 – 20

5 – 20

2 – 10


0,8 – 1

0,5 – 0,8



2 – 8

10 – 30

10 – 40


ЭСЛ

20 – 50

0,5 – 2

0,2 – 0,3

2 – 8

1 – 20

И2Л

0,01 – 0,1

10 – 100

0,02 – 0,05

1

3 – 5

МОП

КМОП


1 – 10

0,01 – 0,1



20 – 200

10 – 50


2 – 3

1 – 2


2 – 8

10 – 20


Как видно из таблицы, наиболее быстродействующими являются в настоящее время схемы ЭСЛ и ТТЛШ, наиболее экономичными – схемы И2Л и КМОП.


izumzum.ru